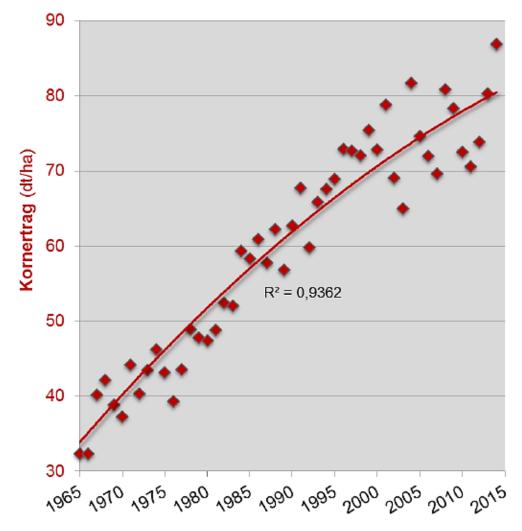
Beitrag des Pflanzenschutzes zur Produktivität des Ackerbaus – Bilanz und Ausblick


Prof. Dr. Andreas von Tiedemann

Department für Nutzpflanzenwissenschaften, Abt. Pflanzenpathologie und Pflanzenschutz
Georg-August Universität Göttingen

Ertragsfortschritte 1930- 2014 (dt/ha; D)

	1930	2014	Änderung [%]
Weizen	21,3	86,8	+308
Roggen	16,3	61,2	+275
Kartoffeln	167,9	474,2	+182
Zuckerrüben	308,9	798,6	+159

Stat. Jahrbuch BMEL, 2015; Gesis Histat, 2016

Kornerträge Winterweizen 1965 – 2014 (D)

- Sortenverbesserung
- Mineraldüngung

Chemischer Pflanzenschutz

Anbau- und Erntetechnik

Studie der Universität Leuven für das EU-Parlament, März 2019

Ertragseffekte durch Pflanzenschutzmittel, global:

Weizen +19%

Reis +32%

Mais +33%

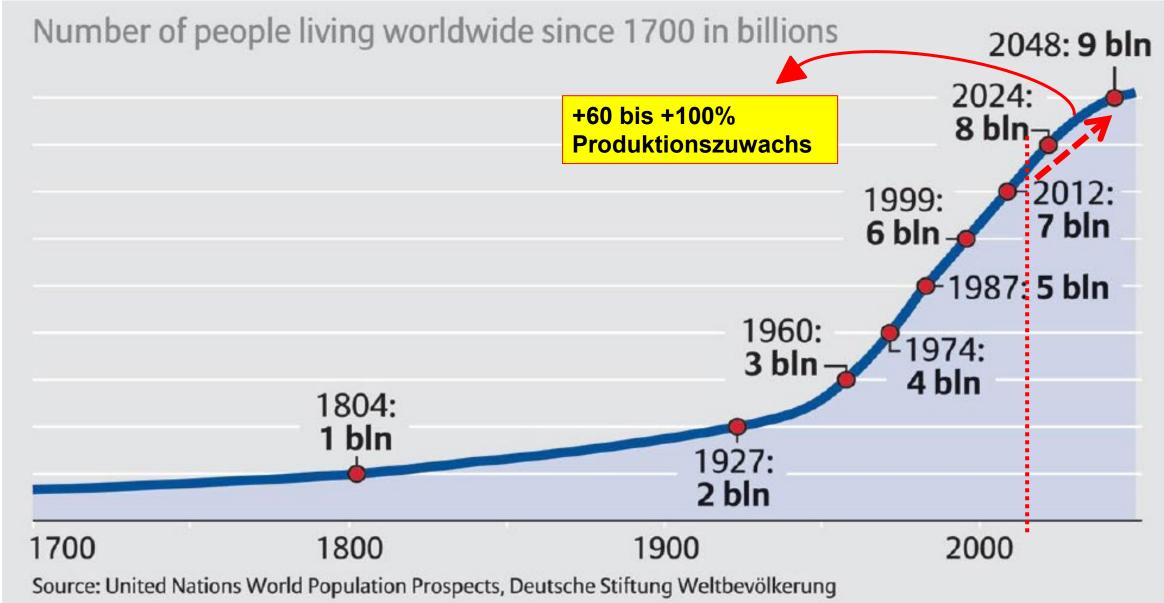
Kartoffel +42%

Sojabohne +27%

Farming without plant protection products

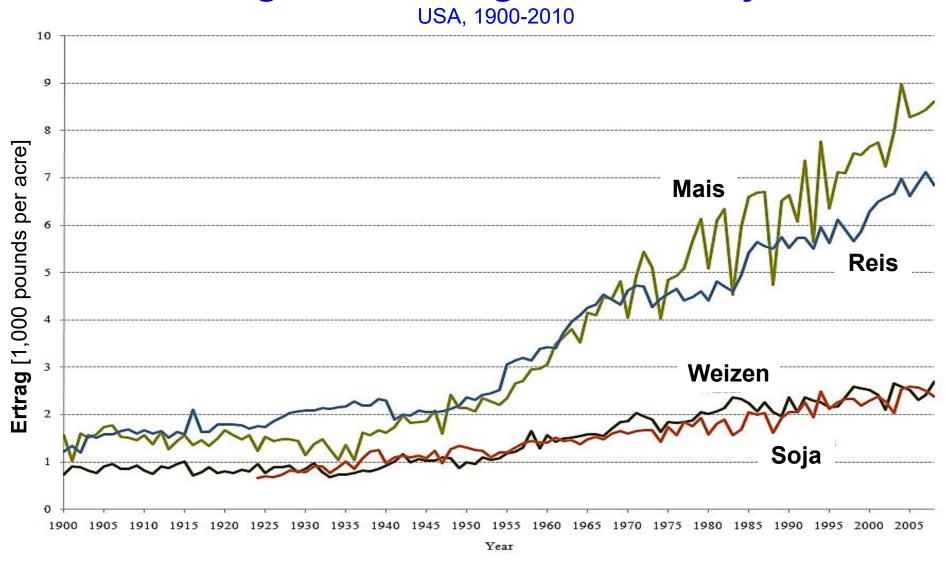
Can we grow without using herbicides, fungicides and insecticides?

IN-DEPTH ANALYSIS

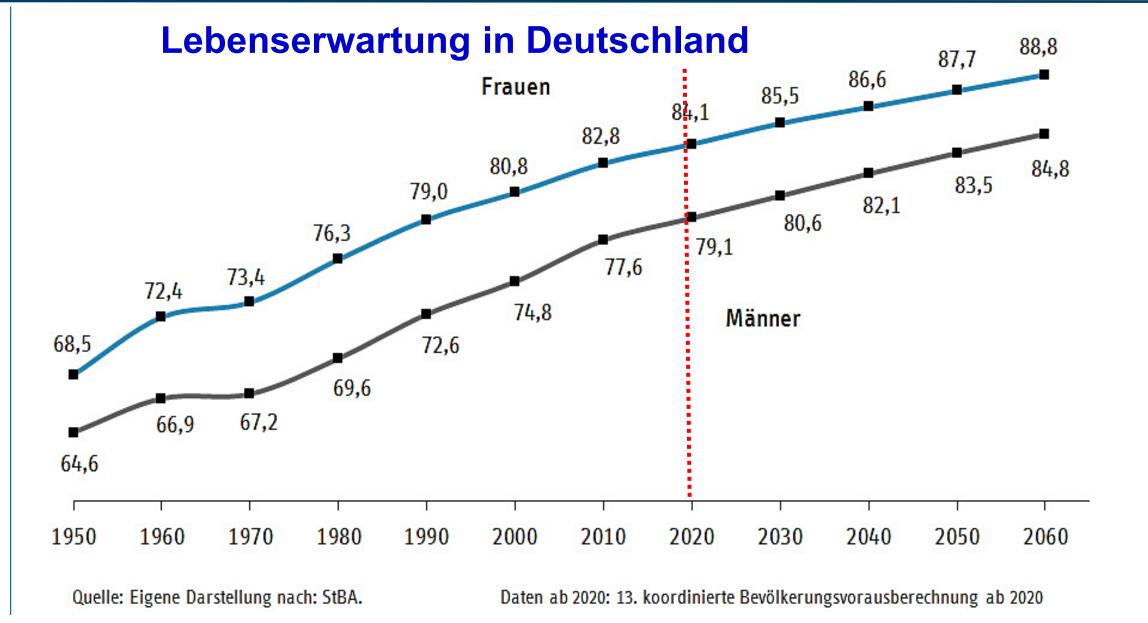

Panel for the Future of Science and Technology

EPRS | European Parliamentary Research Service

Scientific Foresight Unit (STOA) PE 634.416 – March 2019



Ertragsentwicklung Getreide, Soja



Bevölkerungsentwicklung und Hungerrate 1960 - 2018

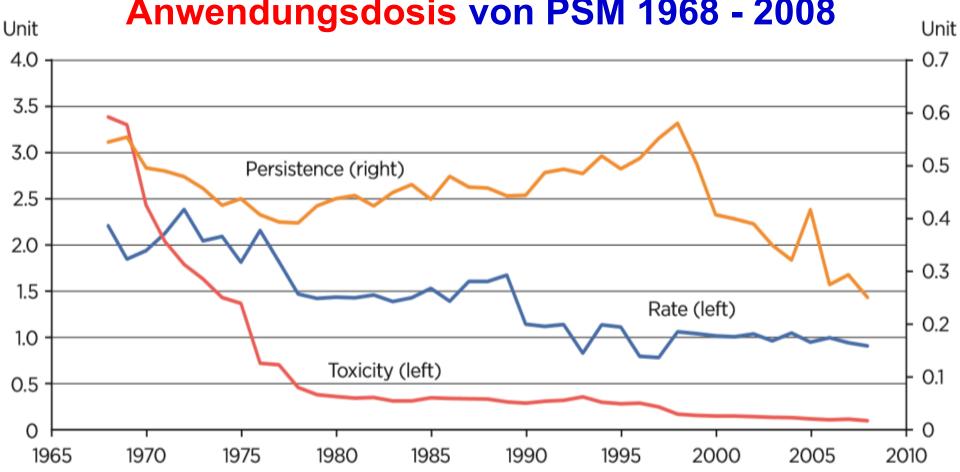
Jahr	Bevölkerung (in Mrd.)	Hungernde [%]
1960	3,02	34
2018	7,64	11

Earth Policy Institute, Rutgers University, NY, USA, 2013; IFPRI, 2017

Meine erste These zum Pflanzenschutz

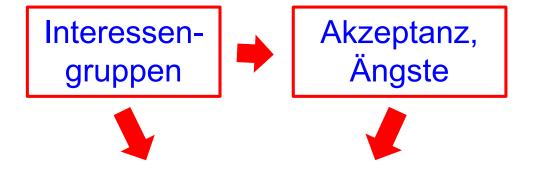
Die Modernisierung der Landwirtschaft ist der entscheidende Grund für die erhebliche Verbesserung der Lebensverhältnisse der Menschen seit dem 20. Jahrhundert.

Entscheidend waren quantitative Ertragssteigerungen u.a. durch effektiven Pflanzenschutz.


Dieser fundamentale zivilisatorische Beitrag ist weitgehend aus dem Bewußtsein der Öffentlichkeit verschwunden und wird von Technologieskepsis überlagert.

Source: Phillips McDougall, 2018; analysis based on 'The Pesticide Manual' (based on data for 600 active ingredients)

Trend Umweltrisiko von Pflanzenschutzmitteln 1996–2010

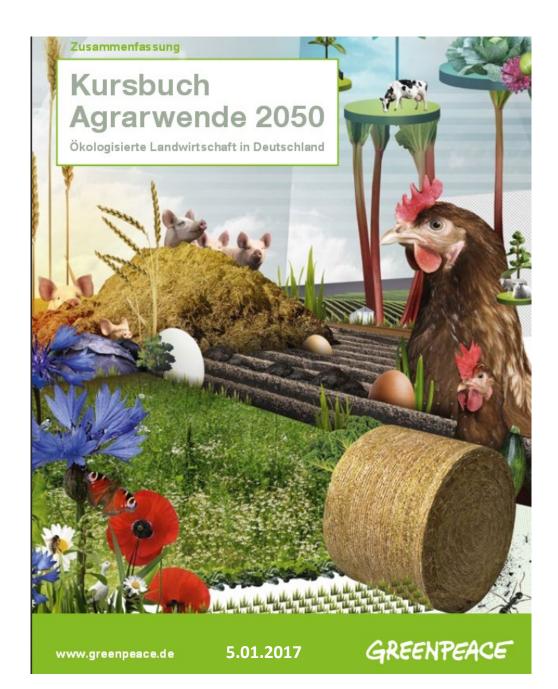

(SYNOPS – aquatisch & terrestrisch, 14 Indikatoren)

	2010 [%] (Mittel 1996-2005 = 100%)
Fungizide	
aquatisches Risiko	93,6
terrestrisches Risiko	77,8
Insektizide	
aquatisches Risiko	75,4
terrestrisches Risiko	39,5
Herbizide	
aquatisches Risiko	55,0
terrestrisches Risiko	54,1

V. Gutsche, Journal f. Kulturpflanzen 64, 325-341, 2012

Wiss.technischer Fortschritt

Verfügbarkeit von Pflanzenschutzmitteln



?

Erntesicherung

→ Ernährungssicherheit

Ressourceneffizienz (Wasser, Nährstoffe, Energie, Fläche)

"Die Landwirtschaft in Deutschland steckt in einer tiefen Krise – ein Kurswechsel ist dringend nötig. Das "Kursbuch Agrarwende 2050" zeigt: Eine ökologisierte Landwirtschaft kann alle Menschen in Deutschland ernähren – sie ist umsetzbar, schrittweise bis zum Jahr 2050"

(Zitat Greenpeace, Kursbuch Agrarwende 2017).

- 30% Ökolandbau
- 50% weniger Fleischkonsum
- 1,6 Mio ha Ackerfläche umwandeln
- Düngung reduzieren
- keine chemischen PSM
- 100% Selbstversorgung (50% Obst, Gemüse)

- Sortenverbesserung
 - Mineraldüngung
 - Chemischer Pflanzenschutz
 - Anbau- und Erntetechnik

Hungerbekämpfung durch Öko-Landwirtschaft?

Ertragsniveau des ökologischen Anbaus im Vergleich zu konventionell (= 100)

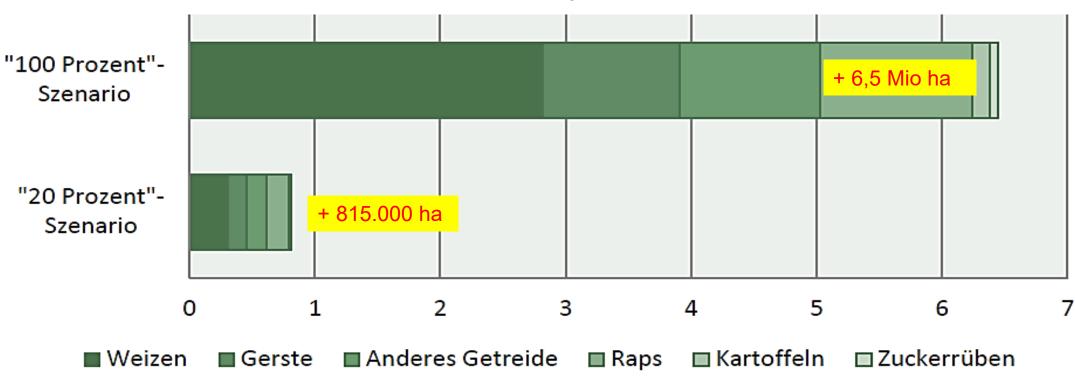
(2011- 2014; DEU)

	in % von konventionell
Weizen	43,0
Gerste	50,1
Raps	55,2
Kartoffeln	54,5

ca. doppelte Fläche für gleiche Produktion erforderlich

S. Noleppa, HFFA Research Paper 01/2016

Erforderliche Produktionssteigerung bis 2050: +70 bis +100% (auf der gleichen Fläche)



Umstellung auf Öko-Anbau in Deutschland – Globale Konsequenzen

→ Je nach Art der Umnutzung bedeutet dies Nettoverlust an globaler Artenvielfalt

21 March 2018

" ... globale landwirtschaftliche Produktion muss bis 2050 um 60 bis 100 % gesteigert werden."

"... Ertragslücken im Ökolandbau von 30-40% bedeuten Mehrbedarf an landw. Nutzfläche von 43-67% ... und einen signifikanten Verlust an natürlichen Habitatflächen."

Annual Review of Resource Economics

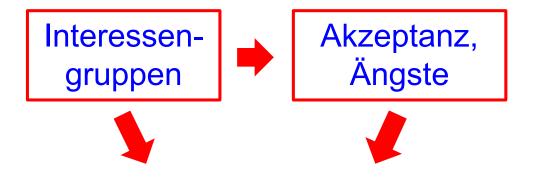
Organic Agriculture, Food Security, and the Environment

Eva-Marie Meemken¹ and Matin Qaim^{1,2}

¹Department of Agricultural Economics and Rural Development, University of Goettingen, Goettingen 37073, Germany; email: mqaim@uni-goettingen.de

²Center of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Goettingen 37073, Germany

"... eine vollständige Umwandlung in organische Produktion hat... einen globalen Nettoverlust an Biodiversität zur Folge."



Meine zweite These zum Pflanzenschutz

Das Risiko von Pflanzenschutzmitteln wird systematisch überschätzt, die großen Fortschritte im Verbraucher- und Umweltschutz in den letzten Jahrzehnten sind nicht bekannt.

Die Wohlfahrtseffekte des Pflanzenschutzes hinsichtlich Erntesicherung und Produktivität, die Voraussetzung für Ernährungssicherung und die Schonung von Naturflächen ist, werden dagegen weitgehend ignoriert.

Wiss.technischer Fortschritt

Verfügbarkeit von Pflanzenschutzmitteln

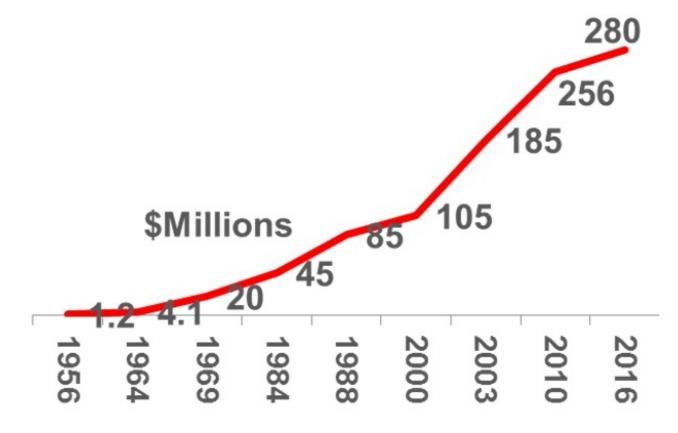
Erntesicherung

→ Ernährungssicherheit

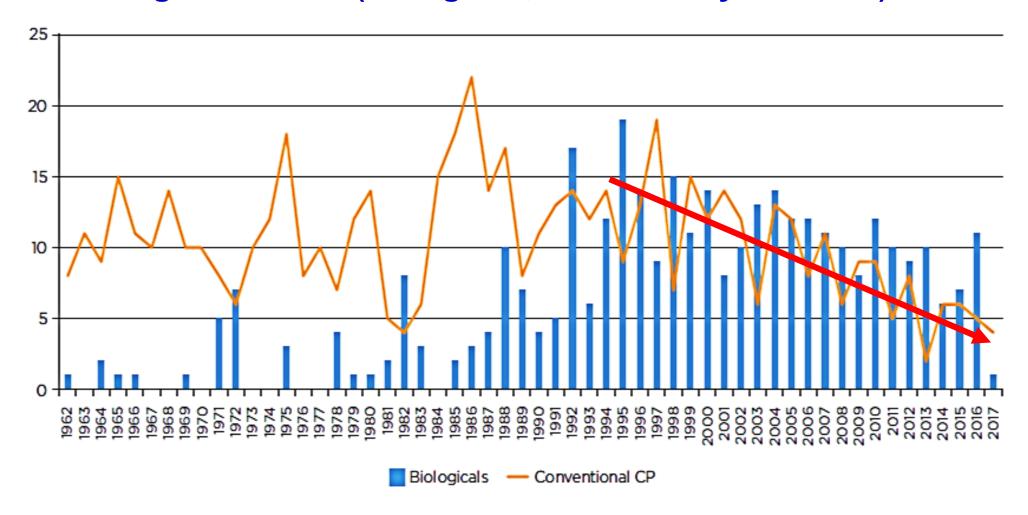
Ressourceneffizienz

(Wasser, Nährstoffe, Energie, Fläche)

Verlust an Wirkstoffen und Wirkstoffvielfalt durch Zulassung und Resistenzentwicklung

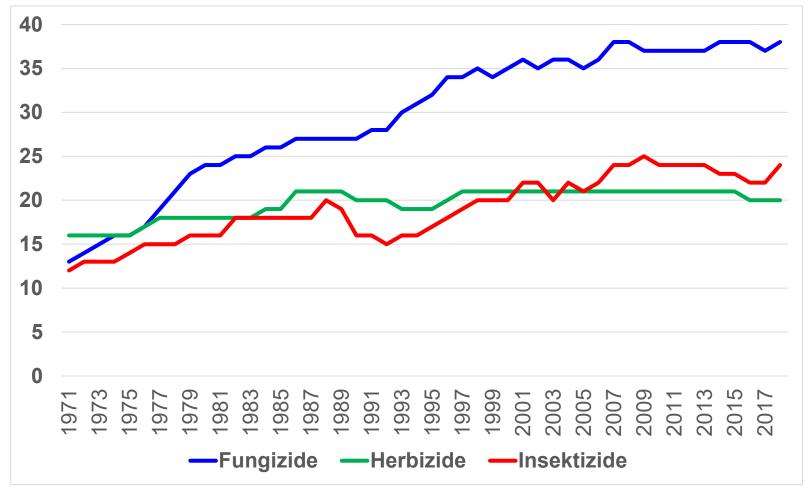


Verlust an Produktivität und Profitabilität



Anstieg der Entwicklungskosten für synthetische Pflanzenschutzmittel 1956 - 2016

(Based on McDougall 2016)



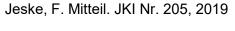
Einführung neuer PSM (biologisch, chemisch-synthetisch) 1962-2017

Verfügbare Resistenzklassen von Pflanzenschutzmittelwirkstoffen in Deutschland 1971-2017

Prozentuale Aufteilung der Einzelindikationen nach Einsatzgebiet, Wirkungsbereich und Resistenzklassen (RK)

(ohne Gruppenindikationen)

Wirkungs- bereich	Fungizide		Herbizide		Insektizide	
Einsatzgebiet	RK <3	RK >=3	RK <3	RK >=3	RK <3	RK >=3
Ackerbau	63,3%	36,7%	95,6%	4,4%	97,6%	2,4%
Gemüsebau	92,9%	7,1%	99,6%	0,4%	99,5%	0,5%
Hopfenbau	0,0%	100,0%	100,0%	0,0%	100,0%	0,0%
Obstbau	88,7%	11,3%	100,0%	0,0%	98,3%	1,7%
Weinbau	25,0%	75,0%	100,0%	0,0%	80,0%	20,0%
Summen*)	83,3%	16,7%	98,1%	1,9%	97,7%	2,3%


^{*)} bezogen auf alle Anwendungsbereiche und Kulturen (einschl. Forst, Zierpflanzen, Grünland, Nichtkulturland, Vorratsschutz)

Anzahl Indikationen mit weniger als 3 Resistenzklassen

	1973	1983	1993	2003	2008	2013	2018
Ackerbau							
Fungizide	21	55	65	104	115	110	199
Herbizide	54	162	243	376	490	535	545
Insektizide	35	51	75	82	95	146	195
Gemüsebau							
Fungizide	27	58	82	293	357	472	590
Herbizide	28	64	116	369	402	402	413
Insektizide	76	115	199	284	408	476	591
Obstbau							
Fungizide	17	34	44	68	80	111	141
Herbizide	16	29	36	50	80	90	97
Insektizide	40	84	87	123	131	114	150
Summen*)	510	1.024	1.307	2.194	2.657	2.993	3.539**)

^{*)} bezogen auf alle Anwendungsbereiche und Kulturen (einschl. Forst, Zierpflanzen, Grünland, Nichtkulturland, Vorratsschutz)

^{**)} entspricht 63,5% aller Schaderreger-Kultur-Kombinationen (= 5.577).

Winterraps

Zuckerrübe

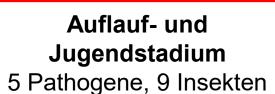
16 Krankheiten

- 8 → Blattkrankheiten
- 7 → Stängelkrankheiten
- $2 \rightarrow$ on pods/seeds
- $3 \rightarrow$ on roots

28 Schadinsektenarten

16 → Blattschädlinge

4 → Stängelschädlinge


6 → an Knospen/Blüten

4 → an Schoten/Samen

3 → an Wurzeln

→ Keine samenübertragbare Krankheiten!

Schossen bis Blüte
12 Pathogene, 16 Insekten

Reife 3 Pathogene, 4 Insekten

Schaderreger	Chemisch	Biologisch	Fruchtfolge	Sorten- resistenz	Boden- bearbeitung
Schadinsekten	•				
Rapserdfloh	+	-	+	-	-
Rapsglanzkäfer	+	-	-	-	-
Gr. Rapsstängelrüssler	+	-	(+)	-	-
Kohlschotenmücke	+	-	-	-	-
Blattläuse	+	-	-	-	-

Rot = Zunahme seit ca. 1995

Schaderreger	Chemisch	Biologisch	Fruchtfolge	Sorten- resistenz	Boden- bearbeitung
Schadinsekten					
Rapserdfloh	+	-	+	-	-
Rapsglanzkäfer	+	-	-	-	-
Gr. Rapsstängelrüssler	+	-	(+)	-	-
Kohlschotenmücke	+	-	-	-	-
Blattläuse	+	-	-	-	-
Pilzliche Pathogene	-				
Sclerotinia	+	+	+	-	-
Phoma	+	-	+	+	(+)
Verticillium	-	-	+	(+)	-
Cylindrosporiose	+	-	+	-	-
Kohlhernie	-	-	+	+	+

Rot = Zunahme seit ca. 1995

Anzahl Wirkstoffe und Targets (MOA) mit Zulassung in Winterraps Europa 1995-2019

	1995	2000	2005	2010	2019
Fungizide*					
Wirkstoffe	9	10	15	18	16 (9)**
MOA	5	5	8	8	6 (5)**
Insektizide					
Wirkstoffe	14	14	9	15	14 (10)**
MOA	3	3	4	2	4

^{*)} ohne Biologicals

**) ohne Substitutionskandidaten

Anzahl Insektizidwirkstoffe und Targets (MOA) mit Zulassung in Zuckerrüben

Stand November 2019

	IRAC-Klasse	Indikation	Zulassungs- ende
Insektizide			
alpha-Cypermethrin	3A	Moosknopfkäfer	
beta-Cyfluthrin	3A	Blattläuse	
Deltamethrin	3A	Moosknopfkäfer	
Dimethoat**)	1B	Rübenfliege	
Lambda-Cyhalothrin	3A	Saugende/beißende Insekten, Rübenfliege, Erdflöhe, Erdraupen	
Pirimicarb	1A	Blatttläuse	
Beizmittel			
Clothianidin, Imidacloprid, Thiamethoxam	4A	Rübenfliege, Moosknopfkäfer, Blattläuse, Erdflöhe, Tausendfüßler, Schnellkäfer	
Tefluthrin	3A	Moosknopfkäfer, Schnellkäfer	

Anzahl Insektizidwirkstoffe und Targets (MOA) mit Zulassung in Zuckerrüben

Stand November 2019

	IRAC-Klasse	Indikation	Zulassungs- ende
Insektizide			
alpha-Cypermethrin	3A	Moosknopfkäfer	31.12.2024
beta-Cyfluthrin	3A	Blattläuse	31.12.2019
Deltamethrin	3A	Moosknopfkäfer	31.12.2024
Dimethoat**)	1B	Rübenfliege	31.07.2018
Lambda-Cyhalothrin*)	3A	Saugende/beißende Insekten, Rübenfliege, Erdflöhe, Erdraupen	31.12.2022
Pirimicarb*)	1A	Blatttläuse	30.04.2020
Beizmittel			
Clothianidin, Imidacloprid, Thiamethoxam**)	4A	Rübenfliege, Moosknopfkäfer, Blattläuse, Erdflöhe, Tausendfüßler, Schnellkäfer	18.09.2018
Tefluthrin	3A	Moosknopfkäfer, Schnellkäfer	31.12.2017

^{*)} Substitutionskandidaten

^{**)} Anwendungsverbot, bzw. nicht mehr zugelassen

Weniger PSM durch Integrierten Pflanzenschutz?

Vorbeugende Maßnahmen

Risikominderung durch Anpassung des Anbausystems (*Bodenbearbeitung, Sorte, Fruchtfolge, Aussaattermin*)

Alternative Verfahren

(Biologischer/biotechnischer PS, mechanische Methoden)

Gezielte Applikation

"So wenig wie möglich, so viel wie nötig" (*Prognosesysteme*)

Luftbürtige, großräumig agierende Schädlinge und Pathogene

Mehltau, Rostpilze, etc., außerhalb des Feldes überdauernde, flugaktive Insekten

Neue bzw. invasive Pathogene und Schädlinge

Invasion & Evolution neuer Arten/Biotypen/Pathotypen/Rassen, Resistenzzüchtung: zu lange Zuchtzyklen

Pathogene in Dauerkulturen

Obst-, Weinbau, Hopfen, Citrus, Kaffee, Ölpalme, Banane

Zielkonflikt bodenschonende Unkrautregulierung

Pfluglose, konservierende Bodenbearbeitung

Insekten - Resistenzzüchtung wenig aussichtsreich

sehr begrenzte oder fehlende natürliche Resistenzquellen -> Aufgabenfeld für die Biotechnologie!

Schlußthesen

Das medial und urban geprägte Weltbild der Öffentlichkeit führt dazu, dass negative Auswirkungen von modernem Pflanzenschutz systematisch überschätzt, seine Wohlfahrtseffekte dagegen weitgehend ignoriert werden.

Das führt zu Einschränkungen im Pflanzenschutz, die die Produktivität der Landwirtschaft und die Profitabilität der Betriebe gefährden.

Eine nachhaltig produktive Pflanzenproduktion ist ohne effektiven Pflanzenschutz nicht möglich. Die Evolution der Schadorganismen geht weiter, invasive Arten kommen hinzu.

Vorbeugende Maßnahmen und Resistenzzüchtung haben Grenzen in Bezug auf Effizienz, lange Vorlaufzeiten und begrenzte genetische Ressourcen (Insekten!)

Chemischer PS wird integraler Bestandteil des IPS bleiben. Er wird nur <u>nachhaltig</u> sein, wenn für wichtige Indikationen mindestens drei RK zur Verfügung stehen.

Innovationen

- Biologicals: Zunehmend, aber nur sehr begrenzte Einsatzbereiche
- NBT ("Genscheren", ,genome editing") → Akzeptanz!?
- Robotik, digitale Techniken: Bedeutung nur für bestimmte Anwendungen (mechan. Unkrautbekämpfung; Diagnostik)

